Year 11 Advanced Errata

Exercise 8C

Q5 (d): Answer is $2^x \ln 2$

Exercise 8D

Q6 (e): Answer is 9 and 27

Q11: Let s be the speed, instead of v

Exercise 9E

Q9 (b): Answer is $\frac{36}{71}$

Exercise 9 Review

Q3 (f): Answer is $\frac{25}{27}$

Year 11 Extension 1 Errata

Exercise 2A

Q19 (a): Answer is $x = \pm 1, \pm 2, \pm 4$ Q19 (d): Answer is $x = -1 \pm \sqrt{3}$ P3 (b): Question should be $(1 - \alpha_1)(1 - \alpha_2) \dots (1 - \alpha_{n-1}) = n$

Exercise 2B

Q3: Delete the word "only"

Exercise 2D

Q5 (a): Question should read "product of roots"

Exercise 2 Review

Q12: Question should have parts (a) and (b) swapped. So first find the roots, and hence find the value of k.

Exercise 3A

Q4 (f): Answer $-\frac{1}{\sqrt{3}}$ Q9 (b): Answer $\cos^2 A - \sin^2 B$ Q13 (c): Answer is $-\frac{16}{63}$ Q16 (d): Answer is $\frac{-48+25\sqrt{3}}{11}$ Q23: Question should be to prove that $\sin y = \pm \frac{1}{3}$, not just $\frac{1}{3}$ Q26 (b) (i): The RHS should be $\frac{1}{\tan A + \cot B} + \frac{1}{\cot A + \tan B}$ P7: Add to the question description to also let $\angle ABD = \theta$

Exercise 3C

F2: Answers $\frac{2t}{1+t^{2'}}$ 2A

Q3 (c): Answer $\frac{1}{4}$ P3: Answer $\frac{1+t}{1-t}$

Exercise 3D

Q4 (a): Answer $\frac{1}{9}$ Q9 (b) (ii): Answer $2 - \sqrt{3}$

Exercise 3 Review

R7: Answer is $2 - \sqrt{3}$

Q19: The LHS should be $-p \cos x + q \sin x$ instead of $p \cos x + q \sin x$

Exercise 4A

Q6 (g): Answer is $\frac{1}{\sqrt{3}}$

Exercise 4C

Q5 (a): Question should be to prove $\tan^{-1} 4 - \tan^{-1} \frac{3}{5} = \frac{\pi}{4}$

Exercise 4 Review

Q11: Question should have $f(x) = 1 + 2\sin(3x)$

Q11 (b): Answer should have \sin^{-1} ... instead of sin ...

Exercise 5A

Q12: The answers to (i), (ii) and (iii) should be for part (c) instead of (b).

Exercise 5B

Q12 (c): Answer should be t = 1 instead of t = 0.9

Q16 (f): Answer is 46 cm

Exercise 5D

- Q4 (b): Inside of the bracket should be P-100
- Q4 (d): Inside of the bracket should be P-100
- Q5 (b): Answer is $\frac{1}{10}$
- Q6 (a): Answer is positive
- P1 (e): Answer is 13.4

Exercise 5E

Q8: Answer should have units cm^3/min

Q17 (a) (ii): Answer is $V = \frac{1}{9}\pi h^3$

Exercise 5 Review

Q11 (b): Answer is $N_0 = 9.88 \times 10^8$ and the rate should be 1.5×10^8 algae per day Q13 (e): Answer is 3.81 litres

Year 12 Advanced Errata

Exercise 1A

P1 (a): Answer is $f(x-6) = (2(x-6) + 1)^2 = (2x - 11)^2$

Exercise 1B

Q5: All instances of 'stretch', change them to 'squash'.

- Q5 (a): Answer is $\sqrt{2x+1}$
- P4: Answers should be as follows.

Translate left by 1.5, stretch horizontally by a factor of 2, then reflect across y-axis Translate left by 1.5, reflect across y-axis, then stretch horizontally by a factor of 2 Stretch horizontally by a factor of 2, reflect across y-axis, then translate right by 3

Exercise 1C

Q6 (c): Answer is "As $x \to \infty$, $y \to 0^+$ and as $x \to -\infty$, $y \to 0^{-}$ "

Exercise 1D

Q19 (d): Answer is $-2 \le x \le 3$

Exercise 4A

Q9 (d): Answer is $\frac{e^{x}(x-n)}{x^{n+1}}$

Exercise 4C

Q4 (d): Answer is $-\frac{1}{x^2}\cos\left(\frac{1}{x}\right)$

Exercise 4D

Q3 (k): Answer is $-\frac{4 \sin x \cos x}{\cos^2 x - \sin^2 x}$

Exercise 4 Review

Q1 (e): Answer is
$$\frac{e^x(3x-1)}{x^2}$$

Q4 (d): Answer is $-\frac{\ln 2}{x(\ln x)^2}$

Exercise 5D

Q7 (b): Stationary point at (2,3).

Exercise 5E

Q1 (b): Answer should include that it is a maximum stationary point.

- Q4 (b): Answer should include the minimum stationary point (0,0).
- Q8 (c): Answer should include that it is a minimum stationary point.
- Q14 (a): The maximum stationary points should be $(\pm \frac{\pi}{2}, 1)$.

Exercise 5F

- Q13: Correct the question to "... and sells them for \$x per unit".
- Q18 (a): The route is from A to P, then from P to C.

Exercise 5 Review

- Q13 (b): Answer should be $\frac{1}{2}\left(e + \frac{1}{e}\right)$
- Q15 (e): Answer should be $-\frac{2}{\sqrt{3}} < x < \frac{2}{\sqrt{3}}$
- Q16 (b): Answer should be "No stationary points"
- Q20 (e): Answer should be "Global max $18-5\ln 18$, global min $5-5\ln 5$ "

Exercise 6A

Q5 (c): Inside of the bracket should be 3x - 2.

Exercise 6D

Q9 (c): Answer should be $\frac{180}{\pi} \ln|\sec x^{\circ}| + C$

Exercise 7A

Q8 (d): Answer is 20

Q8 (e): Answer is 36

Q8 (h): Answer is 58

Exercise 7E

Q5 : Answer is t = 1

Exercise 7 Review

Q13 (b) : In the diagram, A should be at the x-intercept immediately the left to B.

Exercise 8A

Q5 (b) : Answer is $\frac{2}{15}$

Q5 (d): Answer is $\frac{3}{4}$

Q8: The function should be sin(x) instead of cos(2x)

Q10 (c): Diagram should include the shaded region under the curve for $0 \le x \le \frac{1}{2}$

Q12: Question should read $P\left(X \le \frac{3}{2}\right) = \frac{1}{32}$

Q15 (b): Answer is 43.65%

Exercise 8B

Q7 (e): Answers are $F(x) = 1 - e^{-\frac{x}{10}}$ and $m = 10 \ln(2)$

Q10 (a): The question should be "The CDF must always be non-negative"

Exercise 8C

Q5 (c): Expression should be $f''(x) = (x^2 - 1)f(x)$

Exercise 8D

P1 (a): Answer is **0.16**

Exercise 8 Review

Q13 (c): Answer is 47.5%

Year 12 Extension 1 Errata

Exercise 1A

Q5 (c): Question should be $1 + 2 \times 2 + 3 \times 2^2 + 4 \times 2^3 + \dots + n \times 2^{n-1} = \dots$

Q5 (f): Question should be $1 \times 5 + 2 \times 6 + 3 \times 7 + \dots + n(n + 4) = \dots$

Q11 (d): Question should have $n \ge 3$ instead of $n \ge 2$

Exercise 1B

Q7 (b): Question should be to prove $4^n + 5^n$ is divisible by 9, not 19

Exercise 1 Review

- Q1 (d): Question should read $1 \times 3 + 2 \times 4 + 3 \times 5 + \dots + n(n+2) = \dots$
- Q1 (e): Question should read $1 + 2 + 2^2 + 2^3 + \dots + 2^n = \dots$

Q4 (c): Question should read $\frac{1^2}{1\times 3} + \frac{2^2}{3\times 5} + \frac{3^2}{5\times 7} + \dots + \frac{n^2}{(2n-1)(2n+1)} = \dots$

Exercise 2B

Q7 (b): Answer is $\overrightarrow{CB} = \mathbf{u} - \mathbf{v}$

Exercise 2C

Q4 (a): Answer is
$$\overrightarrow{AB} = \begin{bmatrix} 1 \\ 5 \end{bmatrix} = \overrightarrow{DC}$$

Q4 (b): Answer is $\overrightarrow{BC} = \begin{bmatrix} -5 \\ -1 \end{bmatrix} = \overrightarrow{AD}$

Exercise 2D

Q9 (b): The identity should be $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|$

Q9 (c): The identity should be $\mathbf{a} \cdot \mathbf{b} = -|\mathbf{a}||\mathbf{b}|$

Exercise 2F

Q20 (b): The identity is $|AC|^2 + |BD|^2 = 2|AB|^2 + 2|CD|^2$

Exercise 2G

Q10 (a): The displacement vector is $6 \cos 60^{\circ} \mathbf{i} + 6 \sin 60^{\circ} \mathbf{j}$

- Q12 (c): Answer is 1.02 hours.
- Q12 (d): Answer is 8.71 kilometres per hour.

Exercise 2H

Q8 (a): The magnitude should be 25.12~N and the angle should be $204^\circ 55'$

Q8 (b): The resultant vector is $\Sigma F = (15 - 4\sqrt{3})\mathbf{i} + (15\sqrt{3} - 46)\mathbf{j}$ and $|\Sigma F| = 21.59$ N and true bearing 154°02′ T

- Q8 (c): The true bearing is $108^{\circ}43'$ T
- Q8 (d): The true bearing is $0^\circ T$

Exercise 21

- Q7 (a): The **i** component should be $15\sqrt{3}t$
- Q13 (d): Answer should be 53°44'
- Q14 (c): Answer should be V = 20
- Q25 (c): Answer should be 1.36 seconds.

Exercise 3A

Q3 (d): Missing answers $\frac{19\pi}{12}$, $\frac{23\pi}{12}$ Q3 (e): Missing answers $\frac{13\pi}{12}$, $\frac{23\pi}{12}$ Q3 (f): Missing answers $\frac{7\pi}{6}$, $\frac{5\pi}{3}$ Q6 (e): Answers should be 0, 2π , $\frac{2\pi}{3}$, $\frac{4\pi}{3}$ Q10 (c): Domain for the question is $0 \le x \le 2\pi$ Q12 (a): Missing answer $\frac{35\pi}{18}$ Q12 (c): Missing answer $\frac{23\pi}{12}$ Q14 (d): Change question to $\tan\left(2x + \frac{\pi}{4}\right) = 1$

Exercise 3B

- Q1 (e): Missing answer π
- Q1 (i): Change question to $\tan 2x + 2 \tan x = 0$.

New answers $0, \pi, 2\pi, \pm \tan^{-1}\sqrt{2}, \pi \pm \tan^{-1}\sqrt{2}$

Exercise 3C

P1 (f): Answer should be $x = \frac{k\pi}{n}$, where k = 0, 1, 2, 3, ..., 2n

Exercise 3D

Q14: Change question to "Without using calculus, find the range of f(x)".

Answer is now $f(x) \ge -1 + \sqrt{2}$ or $f(x) \le -1 - \sqrt{2}$

P1: Change question to "Without using calculus, find the range of f(x)".

Answer is now $-\sqrt{3} \le f(x) \le \sqrt{3}$

P2: Change question to "Without using calculus, find the range of f(x)".

Answer is now $f(x) \ge 2(-1+\sqrt{2})$ or $f(x) \le -2(1+\sqrt{2})$

Exercise 3E

- Q1 (b): The domain should be $0 \le x \le 360^\circ$
- Q1 (c): Missing answer 360° , and the other answer should be $126^\circ 52'$ not $126^\circ 53'$

Exercise 4B

Q9 (a): The question should read "Simplify $\frac{(1+x^2)-1}{1+x^2}$..." instead of $\frac{(1-x^2)-1}{1+x^2}$

Exercise 5C

Q11 (b): Answer is $\frac{\pi^2}{3}$

- Q13 (b): Answer is 2π
- Q13 (c): Answer is 2π

P3 (a): The volume of the cap should be $V_{\rm cap} = \frac{\pi}{3} (3rh^2 - h^3)$

Exercise 5D

Q8 (d): The question should say "The region in (b) is rotated..."

Q8 (e): The question should say "The region in (c) is rotated..."

Exercise 5 Review

Q10 (b): Answer is $\frac{256\sqrt{2}\pi}{15}$

Exercise 7A

Q15: The differential equation should be $y'' + n^2 y = 0$

Exercise 7C

Q9: The solution is $y = \pm \sqrt{x^2 + A}$

Q11: The solution is $y = \sin(x^2 + C)$ for some constant C.

Q13: The solution should be $y = Ae^{-2x} + B$

Exercise 7D

Q9 (g): Answer is 13.4 litres per minute

Q13: The population grows proportionately to the current population, and has a constant emigration rate m.

Exercise 7 Review

Q1 (b): Should be $y = x^2 e^x$ instead of $y = \frac{\ln x}{x}$ Q1 (c): Should be $y = -\frac{3}{x}$ instead of $\frac{dy}{dx} = -\frac{3}{x}$ Q17 (c): Answer is 71.6% Q21 (b): Answer is 250 years Q22 (c): Answer is 29.57 minutes

Year 12 Extension 2 Errata

Exercise 1E

Q12 (c): The last sentence should be "Then r is also divisible by 4"

Exercise 2B

Q5: The answer is k = 8 - i

Exercise 2G

Q3 (d): The RHS should be $\frac{\cot^4 \theta - 6 \cot^2 \theta + 1}{4 \cot^3 \theta - 4 \cot \theta}$

Exercise 2J

Q12 (b): The polynomial is $P(x) = x^4 + x^3 + 6x^2 + 3x + 1$

Exercise 2K

Q1 (c): The answer is $2e^{-\frac{5\pi i}{6}}$

Exercise 5D

Q2 (b): Show that $x = \frac{1}{4} \ln(1 + 40t)$

Q2 (c): Answer is ln 3